418 J. Phys. Chem. A997,101,418-421

Hierarchical Structure of the Atomic Orbital Wave Functions of D-Dimensional Atom
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The hierarchical structure of the set of atomic orbital wave functiori3-dimensional atoms is discussed by
using the set of their rectangular coordinate expressions.

Introduction where 0<r <o, 0<0, <27, 0=< a3, ...,0p.1, ap < 7. The
volume element, xi®, and the solid angle elementQ(P), of

From the very early stage of the progress in quantum ihe o coordinate systems are respectively defined by
mechanical study of the structures of atoms and molecules in

the real 3-dimensional world, it has been pointed out that the ax® = dx, dX, ... dp = P~ 1 dr do®@ 2)
essence of these theories would easily be understandable if their
mathematics is constructed in the nonrelativistic hyperspace
worlds especially for the so-called Kepler probléhHowever,
the main roads of the quantum theories of atomic structures
have not actually been paved with hyperspace bricks, except
for those problems involving the Lee algeBra. s, = f 4o® — 2.71D/2/I“(D/2) _ 2[(D+1)’2]7z[D’2]/(D — o
Although interesting papers on the structure of atoms in other (4)
dimensions have been sporadically but continually published
in physics journal§; 16 it was quite recently approved that the wherel stands for the gamma function] fepresents the largest
dimensional scaling technique can bring out fair advancementinteger which does not exceedl and the double factorial is
in the study of various facets of hydrogenic atothddowever, defined by
rigorous analytical expressions of higher dimensional atomic
wave functions have not widely been publicized until quite NI'=N(N-2)N—-4)..1or2 (5)
recently. with Ol = (—1)Il = 1.
The present author has shown t.hat the number of degeneracies g sider vector of a unit length emanating from the origin
of the angular momentum of B-dimensional D-space) alom ¢ b snace. The squared average of its direction cosine with

can qu!'te easily be obtaln_ed from_ the “asymmetnc Pascal respect to any of the rectangular coordinate axes shouldbe 1/
triangle” 8 and also has devised a simple algebraic method for That is, one can expect the relation

deriving the analytical forms of the hyperspace wave functiéns.
In this paper the interesting features of the hierarchical structure 2 46(D) D) _

of the wave functions of the angular part of thespace atomic f (Xi/r) de /f de 1D ©6)
orbitals will be demonstrated and discussed. Itis to be noted  as an extension of this relation the squared average of the

here that all the discu;sions in this paper are irrelevant to thepower product of more than one direction cosines can be
nature and mathematical form of the central fofCe. obtained a-24

dQ® = (sin )P X(sin 0p,)°>...siNa, dog ... do,  (3)

The total solid anglés; in D-space is obtained to B

D-Space Coordinate Systems

s
BTG = [ ————dQ®) [ dQ® =
Let the relation between the rectangujai, x, ..., Xo} and : frz(”1+"2+"3+“') f
polar{r, a, as, ...,ap} coordinate systems for tHe-space be (2n, — 1)N(2n, — )!'(2ng — 1)IL...(D — 2)!!

7 1,22 7
defined as follows: (2n, +2n, + 20, + ..+ D — 21l %

X, =rsinog sinog_, ... Sinog sina, This relation is useful for obtaining the normalized expres-
sions for the angular parts of tliz-space atomic functions in

X, = 1SN0 SINAp_; ... SINA; COSA, terms of rectangular coordinates.

Xg =T Sinop Sinop_4 ... COSG Degeneracy ofD-Space Atomic Orbitals

Although the angular parts of the atomic wave functions are
usually expressed in complex form using the polar coordinates,
we will mainly be concerned with those in real form using the

X =T Sinay, Cosa rectaqgular coordin_ates. For example, in 3-space case instead
of using Ym(0,¢) in complex form, we user'[4z/(2 +
Xo = I COSOlp D)]Y2Y, (6,¢) in real rectangular coordinate form, suchxay,

andzfor | = 1. Thus neither explicit formulation of (hyper)-
spherical harmoni@8 nor calculus of differential equation is
needed in this treatment.

By extending the 3-space quantum mechanical atomic
€ Abstract published irAdvance ACS Abstractdanuary 1, 1997. theory?®to D-space, it is straightforward that the wave functions
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TABLE 1: Number of Degeneracies,g(D,l), of Angular TABLE 2: Hierarchical Structure of D-Space d-Orbitals
Momentum | of the Hydrogen Atom in D-Space and the
Asymmetric Pascal’s Triangle To Generate These Numbers
| 5 1 5 3 2 : level codé 5 4 3 >
D < b q ; g h 54321  x+/58 V2I3 x /32 x 1 weight
22221 Xx b b b x1
51 0 0 0 0 222208-% b b b xi
3 1 3 5 7 9 11 22211 Zxs b b x1
4 1 4 9 16 25 36 22210 Zx b b x1
5 1 5 14 30 55 91 2220 0xX+x-24G b b b x1/3
6 1 6 20 50 105 196 22111 Zx b x1
Asymmetrical Pascal’s Triangle g g 1 (l) 8 g(é)x(j E ii
1 22000xX+x+x-3G b x1/6
2 1 21111 Zx x1
2 3 1 21110 Zx x1
2 5 4 1 21100 Zxs x1
2 7 9 5 1 2100 0 Zuxs x1
2 9 16 14 6 1 2000 Ox§73x§+ «1/+/10
2 11 25 30 20 7 1 X§+Xi—4><§

a Starting from the top three numbers (1,2,1) all other entries can be

2 For explanation see AppendixSame as the left-neighbor column.

generated as in the conventional Pascal’s triangle to form “asymmetrical ¢ The normalization constant for a given entry is the product of the

Pascal’s triangle”, giving(D,l)’s.

for D-spacel-orbitals O-I's) should form such a set of

orthonormal independent homogeneous harmonic polynomials

of orderl composed oD rectangular coordinates. Then the

two weights corresponding to its row and column. Example:xfor

X2 — 24 in 4-space isv'2/3 x 1//3 = +/2/3. Its level code 22200
means that this function became a member of d-orbitals already in
3-space.

number of degeneracg(D,l), of the D-I's is given by8:24.27 TABLE 3: Hierarchical Structure of D-Space f-Orbitials
D
D+2 —2(D+1-3
gD,) = f( 1 (1=0) level codé 4 3 5
D4l-3 4 3 2 1 x 1?2 x v/5/8 x1 weight
= M( ) (D=2) (8) 3 3 3 1 xx¥-39 b b x1

e I o e

. . XoX3 6

whose values for smaller members are given in Table 1. One 3 3 5 g (le_z )X b i V6
of the most important aspects of the mathematical structure of 3 3 1 1 xixi +2X§3_ 2 b VAR

the set ofD-I's is that they originate from the set of all thB ( _

C o . - ; 3 3 1 0 x,(:+x—4%) b x +/3/5
— 1)Ks with 0 < k < |. That is, the recursive relation 3.3 0 0 (3¢+3¢—2dx b < V/2I5

o B B 3.2 2 1 Zox x /6

is observed as in Table 1. It has also been shown thatthey can3 2 1 1 Zuxox x /6

quite easily be derived from the so-called asymmetrical Pascal's 3 2 1 O 3<2>@<42 x /6

triangle (see also Table 1§19 3.2 0 0 pG+x5—29)%x, x /2
3 1 1 1 x(+%+x—54) x /25
Hierarchical Structure of D-Space Atomic Wave 3 1 1 0 x(+xX+x5-54% x /2[5
Functions 3 1 0 0 x(¢+x+x5—5Q) x /2[5
3 0 0 0 (3¢+3¢+3¢—3)x, x /213

The main purpose of the present paper is to look into the
details of this hierarchical structure of the wave functions of

2 For explanation see Appendi% See the corresponding explana-

D-space atoms. The explicit rectangular coordinate expressionstions in Table 2.

for the lower members of thB-l-orbitals have been derived
by the present authd®:’® Forl < 3 general expressions for an

orbitals in 2-space are both unity, which is obtained by

arbitrary D have also been obtained. The essence of theseMultiplication of the two weight factors given in Table 2.

derivations is summarized in the following four mathematical
constraints? (i) orthonormality; (i) hierarchical structure (eq
9); (iii) sphericity (see the discussion below); and (iv) equiva-
lency (eq 6).

By taking these properties of the whole set of the wave
functions of aD-space atom into account, we can draw the
diagrams illustrating the hierarchical structure of these wave-

It can be interpreted that the former functiorpg, is derived
when the dimesionality of the space is increased from 1 to 2.
That is, the only p-orbitabyg, in 1-space is multiplied byX2 to
give one of the two d-orbitals in 2-space. On the contrary, the
function Zx,, together with its counterpark? — x.?, keeps
its membership in all the higher spaces. However, their relative
weight in the whole set dD-d functions decreases witB[2(D

functions as in Tables 2 and 3. For detailed discussions see— 1)]¥2 All these historical trails of this pair of d-orbitals from

the Appendix.

Let us begin with d-functions, since the structure of p-
functions inD-space is so obvious. In Table 2 all the sets of
the normalized d-orbitals from 2- to 5-space in rectangular
coordinates are tabulated. It is easily verified by taking their
squared sum that a pair of d-functiongp2 andx;? — x,?, can
spanr“ in 2-space. The normalization constants for these two

1- to 5-space are respectively encoded as 22221 and 22220 in
terms of “level code”. The digits 0, 1, and 2 represent the
angular quantum number of a given function in each dimension,
and one can trace the historical trail of each wave function along
the path drawn on Chart 1. Consult also the Appendix for more
detailed discussion on the “level codes” and “step codes” which
make the mathematical structure of these wave functions clearer.
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CHART 1 TABLE 4: 1-—1 Correspondence among the Homogeneous
Harmonic Polynomials and Step and Level Codes for the
Diagram Given in Figure 1

) D=5 4 3 2 1
step cod@ monomial level code
0002 xi 22220
2 @ 0011 XaXa 22210
0020 xg 22200
0101 XoXa 22110
0110 XoX3 22100
L ® 0200 2 22000
1001 X1Xa 21110
1010 X1X3 21100
0 (s) 1100 X1X2 21000
2000 xf 20000
@ Nonnegative solutions of; + x; + X3 + x4 = 2.
D+1-1
CHART 2 K(D,l) =pH, = ( | )
! (i) This value is equal to the number of nonnegative integer
solutions ofx; + X, + ... + xp = |. If a solution is expressed
3 by a sequence @ digits, x;xz.. Xp, it can be deemed adadigit
integer. For the case with> 9 the integer may be interpreted
asl-adic.
(i) Rearrange all the set afH, D-digit integers of (ii) in
2 @ increasing order. An example is shown in Table 4 viltk= 4
and | = 2, where all the set oD-digit integers and the
corresponding monomials of order 2 composed out &F,X3,X4
1@ are given.

(iv) Arrange { + 1) x (D — 1) points to form a square lattice,
and put two additional points, A and Z, respectively, to form
the top left and bottom right wings as in Figure 1a so that these
two points respectively sit on the top and bottom rows. Starting
from A and finishing at Z, draw all the possible horizontal and
downward lines between the pair of points sitting on neighboring
pairs of columns. The number &f-step paths from Ato Z is

The squared sum of thg(D,l) functions for a given pair of ~ equal topH), because each of such paths can be represented by
D andl should ba?2. This property may be called the sphericity @ D-digit integer inl-adic expression if a nonnegative integer,
of the set of these wave functions (vide infra). The simplest k. is assigned to a rightward step that goes dowrk syairs.
case is the set db p-orbitals inD-space, where their squared L€t us call thisD-digit integer “step code”. An example is
sum givesr2 as in eq 1. The squared sum of the setDf+ illustrated with the sequence of four arrows, whose step code

2)(D — 1)/2 d-orbitals inD-space as shown in Table 2 yields IS 0002. Every possiblB-step path from A to Z in Figure 1a
r4 can find its counterpart in the first column in Table 4.

L ) . (v) Transform the step code into “level code” with ¢ 1)
Similarly for f-orbitals of 2- to 4-spaces the normalized yigis for the set oD-step paths so that each digit represents
rectuangular coordinate expressions are given in Table 3 togethete |evel of the point in a given path from levieto level-O0.

with the Chart 2. The squared sum of the seDgb — 1)(D The level code for the path exemplified in (iv) is 22220. Al
+ 4)/6 orbitals giveg®. The relative weight in the whole set  the level codes corresponding to the step codes given in (iv)

X4 X3 Xy X1

of D-f functions decreases withl( + 2)/4D — 1)]¥2. One are given in the third column of Table 4, where the level codes
can observe various features of the hierarchical structubefof  appear in decreasing order. Note that the numbers of elements
functions in Table 3 as in the casedfd functions. However, in (i)—(v) are all equal tgyH,, or K(D,).

the analytical formulas and relations rapidly get complicated  (vi) For each point of the diagram used in (iv) and (v), one
asD increases. Thus, there is no point in extending this type can count the number of possible ways for going down to Z by
of discussion to g and higher angular momenta. the shortest steps. These numbers can easily be obtained as
g follows by starting a, for which 1 is assigned naturally.

All the points that are direct neighbors of Z are also given 1.
To each point in the next column assign such a number that is
the sum of the numbers already assigned to the right neighbors.
The numerals encircled in Figure 1a are obtained according to
this method and are equal ##;, or K(D,l). Although Figure

All the results obtained in this study provide us clear an
global understanding of the mathematical structure of the atomic
orbitals in our 3-space real world not only for researchers but
also for students.

Appendix: Proof of Diagramatic Enumeration of pH; and la was drawn for a special pair Bf andl, this diagram can
g(D,l) endlessly grow up reversively from Z to infinitely largeeand
| values, providing the same numbers in Table 1 but more
(i) The number of homogeneous produxitg’x, of orderl = information as to their hierarchical structure.
p + q + r composed oD variablesxi, X, ..., Xp, is equal to (vii) As already stated® the number of degeneracy of the

the repeated combination bkelections out oD, i.e., angular momenturhof the atomic orbitals of &-space atom,
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(a)

(b) ! 1

Figure 1. (a) Diagram showing the number of homogeneous products
of order| composed oD variables. The number encircled at point
(D)) gives itspH; value. The sequence of the four consecutive arrows
shows one of the possible paths from A to Z, whose step and level
codes are respectively 0002 and 22220. See also Table 4. (b) Diagral
showing the number of degeneracy®f-orbitals. This diagram can

be expanded freely to larg& andl values.

g(D,l), is the difference betweesH, andp2H,. By realizing

the meaning of the processes (iv) and (vi) one can immediately

find that this number can be enumerated from the diagram,
shown in Figure 1b, which are derived from Figure la by
deleting Z and the direct neighbors of Z except for the bottom
two (i.e.,D = 1 andl = 0 and 1). One can then prepare the
tables of the step and level codes for a given seg(@f,)
straightforwardly. In this example, only the top entry in Table

4 has been deleted to give Figure 1b, and thus the tabulation of

the new set of paths from A to Z is omitted here. However, in

J. Phys. Chem. A, Vol. 101, No. 4, 199421

and monomials as in Table 4 is lost. Instead, the functional
forms of the homogeneous harmonic polynomials with proper
normalization constants as in Tables 2 and 3 are needed, where
the order of{ x} is reversed. This process is guaranteed from
a symmetrical reason.

For each point in Figure 1b one can obtain the corresponding
o(D,l) value, which satisfies the recursive relation, eq 9. This
process and the results obtained can explain what is meant in
the asymmetrical Pascal triangle proposed by the presenmt
authorig19
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