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The hierarchical structure of the set of atomic orbital wave functions ofD-dimensional atoms is discussed by
using the set of their rectangular coordinate expressions.

Introduction

From the very early stage of the progress in quantum
mechanical study of the structures of atoms and molecules in
the real 3-dimensional world, it has been pointed out that the
essence of these theories would easily be understandable if their
mathematics is constructed in the nonrelativistic hyperspace
worlds especially for the so-called Kepler problem.1,2 However,
the main roads of the quantum theories of atomic structures
have not actually been paved with hyperspace bricks, except
for those problems involving the Lee algebra.3-8

Although interesting papers on the structure of atoms in other
dimensions have been sporadically but continually published
in physics journals,9-16 it was quite recently approved that the
dimensional scaling technique can bring out fair advancement
in the study of various facets of hydrogenic atoms.17 However,
rigorous analytical expressions of higher dimensional atomic
wave functions have not widely been publicized until quite
recently.
The present author has shown that the number of degeneracies

of the angular momentum of aD-dimensional (D-space) atom
can quite easily be obtained from the “asymmetric Pascal
triangle”,18 and also has devised a simple algebraic method for
deriving the analytical forms of the hyperspace wave functions.19

In this paper the interesting features of the hierarchical structure
of the wave functions of the angular part of theD-space atomic
orbitals will be demonstrated and discussed. It is to be noted
here that all the discussions in this paper are irrelevant to the
nature and mathematical form of the central force.20

D-Space Coordinate Systems

Let the relation between the rectangular{x1, x2, ..., xD} and
polar{r, R2, R3, ...,RD} coordinate systems for theD-space be
defined as follows:21,22

where 0e r e ∞, 0e R2 e 2π, 0e R3, ...,RD-1, RD e π. The
volume element, dx(D), and the solid angle element, dΩ(D), of
the two coordinate systems are respectively defined by

The total solid angleSD in D-space is obtained to be22,23

whereΓ stands for the gamma function, [x] represents the largest
integer which does not exceedx, and the double factorial is
defined by

with 0!! ) (-1)!! ) 1.
Consider vectorr of a unit length emanating from the origin

of D-space. The squared average of its direction cosine with
respect to any of the rectangular coordinate axes should be 1/D.
That is, one can expect the relation

As an extension of this relation the squared average of the
power product of more than one direction cosines can be
obtained as19,24

This relation is useful for obtaining the normalized expres-
sions for the angular parts of theD-space atomic functions in
terms of rectangular coordinates.

Degeneracy ofD-Space Atomic Orbitals

Although the angular parts of the atomic wave functions are
usually expressed in complex form using the polar coordinates,
we will mainly be concerned with those in real form using the
rectangular coordinates. For example, in 3-space case instead
of using Yl,m(θ,φ) in complex form, we userl[4π/(2l +
1)]1/2Yl,m(θ,φ) in real rectangular coordinate form, such asx, y,
andz for l ) 1. Thus neither explicit formulation of (hyper)-
spherical harmonics25 nor calculus of differential equation is
needed in this treatment.
By extending the 3-space quantum mechanical atomic

theory26 toD-space, it is straightforward that the wave functionsX Abstract published inAdVance ACS Abstracts,January 1, 1997.

x1 ) r sinRD sinRD-1 ... sinR3 sinR2

x2 ) r sinRD sinRD-1 ... sinR3 cosR2

x3 ) r sinRD sinRD-1 ... cosR3

···

xD-1 ) r sinRD cosRD-1

xD ) r cosRD

x1
2 + x2

2 + ...+ xD
2 ) r2 (1)

dx(D) ) dx1 dx2 ... dxD ) rD-1 dr dΩ(D) (2)

dΩ(D) ) (sinRD)
D-2(sinRD-1)

D-3...sinR3 dRD ... dR2 (3)

SD )∫ dΩ(D) ) 2πD/2/Γ(D/2)) 2[(D+1)/2]π[D/2]/(D - 2)!!
(4)

N!! ) N(N- 2)(N- 4) ... 1 or 2 (5)

∫(xj/r)2 dΩ(D)/∫ dΩ(D) ) 1/D (6)

〈xi
2n1xj

2n2xk
2n3...〉D )∫xi

2n1xj
2n2xk

2n3...

r2(n1+n2+n3+...)
dΩ(D)/∫ dΩ(D) )

(2n1 - 1)!!(2n2 - 1)!!(2n3 - 1)!!...(D - 2)!!

(2n1 + 2n2 + 2n3 + ...+ D - 2)!!
(7)
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for D-space l-orbitals (D-l’s) should form such a set of
orthonormal independent homogeneous harmonic polynomials
of order l composed ofD rectangular coordinates. Then the
number of degeneracy,g(D,l), of theD-l’s is given by18,24,27

whose values for smaller members are given in Table 1. One
of the most important aspects of the mathematical structure of
the set ofD-l’s is that they originate from the set of all the (D
- 1)-k’s with 0 e k e l. That is, the recursive relation

is observed as in Table 1. It has also been shown that they can
quite easily be derived from the so-called asymmetrical Pascal’s
triangle (see also Table 1).18,19

Hierarchical Structure of D-Space Atomic Wave
Functions

The main purpose of the present paper is to look into the
details of this hierarchical structure of the wave functions of
D-space atoms. The explicit rectangular coordinate expressions
for the lower members of theD-l-orbitals have been derived
by the present author.18,19 For l e 3 general expressions for an
arbitrary D have also been obtained. The essence of these
derivations is summarized in the following four mathematical
constraints:19 (i) orthonormality; (ii) hierarchical structure (eq
9); (iii) sphericity (see the discussion below); and (iv) equiva-
lency (eq 6).
By taking these properties of the whole set of the wave

functions of aD-space atom into account, we can draw the
diagrams illustrating the hierarchical structure of these wave-
functions as in Tables 2 and 3. For detailed discussions see
the Appendix.
Let us begin with d-functions, since the structure of p-

functions inD-space is so obvious. In Table 2 all the sets of
the normalized d-orbitals from 2- to 5-space in rectangular
coordinates are tabulated. It is easily verified by taking their
squared sum that a pair of d-functions, 2x1x2 andx12 - x22, can
spanr4 in 2-space. The normalization constants for these two

orbitals in 2-space are both unity, which is obtained by
multiplication of the two weight factors given in Table 2.
It can be interpreted that the former function, 2x1x2, is derived

when the dimesionality of the space is increased from 1 to 2.
That is, the only p-orbital,x1, in 1-space is multiplied by 2x1 to
give one of the two d-orbitals in 2-space. On the contrary, the
function 2x1x2, together with its counterpart,x12 - x22, keeps
its membership in all the higher spaces. However, their relative
weight in the whole set ofD-d functions decreases with [D/2(D
- 1)]1/2. All these historical trails of this pair of d-orbitals from
1- to 5-space are respectively encoded as 22221 and 22220 in
terms of “level code”. The digits 0, 1, and 2 represent the
angular quantum number of a given function in each dimension,
and one can trace the historical trail of each wave function along
the path drawn on Chart 1. Consult also the Appendix for more
detailed discussion on the “level codes” and “step codes” which
make the mathematical structure of these wave functions clearer.

TABLE 1: Number of Degeneracies,g(D,l), of Angular
Momentum l of the Hydrogen Atom in D-Space and the
Asymmetric Pascal’s Triangle To Generate These Numbers

l
D

0
s

1
p

2
d

3
f

4
g

5
h

1 1 1 0 0 0 0
2 1 2 2 2 2 2
3 1 3 5 7 9 11
4 1 4 9 16 25 36
5 1 5 14 30 55 91
6 1 6 20 50 105 196

Asymmetrical Pascal’s Trianglea

1
2 1

2 3 1
2 5 4 1

2 7 9 5 1
2 9 16 14 6 1

2 11 25 30 20 7 1

a Starting from the top three numbers (1,2,1) all other entries can be
generated as in the conventional Pascal’s triangle to form “asymmetrical
Pascal’s triangle”, givingg(D,l)’s.

g(D,l) ) D + 2l - 2
l ( D + l - 3

l - 1 ) (l * 0)

) D + 2l - 2
D - 2 ( D + l - 3

l ) (D * 2) (8)

g(D,l) ) g(D-1,0)+ g(D-1,1)+ ...+ g(D-1,l) (9)

TABLE 2: Hierarchical Structure of D-Space d-Orbitals

D
level codea

5 4 3 2 1
5

×x5/8
4

×x2/3
3

×x3/2
2
× 1 weightc

2 2 2 2 1 2x1x2 b b b ×1
2 2 2 2 0 x1

2 - x2
2 b b b ×1

2 2 2 1 1 2x1x3 b b ×1
2 2 2 1 0 2x2x3 b b ×1
2 2 2 0 0 x1

2 + x2
2 - 2x3

2 b b b ×1/x3
2 2 1 1 1 2x1x4 b ×1
2 2 1 1 0 2x2x4 b ×1
2 2 1 0 0 2x3x4 b ×1
2 2 0 0 0 x1

2 + x2
2 + x3

2 - 3x4
2 b ×1/x6

2 1 1 1 1 2x1x5 ×1
2 1 1 1 0 2x2x5 ×1
2 1 1 0 0 2x3x5 ×1
2 1 0 0 0 2x4x5 ×1
2 0 0 0 0 x1

2 - 3x2
2 +

x3
2 + x4

2 - 4x5
2

×1/x10

a For explanation see Appendix.b Same as the left-neighbor column.
c The normalization constant for a given entry is the product of the
two weights corresponding to its row and column. Example: forx1

2 +
x2
2 - 2x3

2 in 4-space isx2/3 × 1/x3 ) x2/3. Its level code 22200
means that this function became a member of d-orbitals already in
3-space.

TABLE 3: Hierarchical Structure of D-Space f-Orbitials

D
level codea

4 3 2 1
4

× 1/x2
3

×x5/8
2
×1 weightc

3 3 3 1 x1(x1
2 - 3x2

2) b b ×1
3 3 3 0 x2(x2

2 - 3x1
2) b b ×1

3 3 2 1 2x1x2x3 b ×x6
3 3 2 0 (x1

2 - x2
2)x3 b ×x6

3 3 1 1 x1(x1
2 + x2

2 - 4x3
2) b ×x3/5

3 3 1 0 x2(x1
2 + x2

2 - 4x3
2) b ×x3/5

3 3 0 0 (3x1
2 + 3x2

2 - 2x3
2)x3 b ×x2/5

3 2 2 1 2x1x2x4 ×x6
3 2 2 0 (x1

2 - x2
2)x4 ×x6

3 2 1 1 2x1x3x4 ×x6
3 2 1 0 2x2x3x4 ×x6
3 2 0 0 (x1

2 + x2
2 - 2x3

2)x4 ×x2
3 1 1 1 x1(x1

2 + x2
2 + x3

2 - 5x4
2) ×x2/5

3 1 1 0 x2(x1
2 + x2

2 + x3
2 - 5x4

2) ×x2/5
3 1 0 0 x3(x1

2 + x2
2 + x3

2 - 5x4
2) ×x2/5

3 0 0 0 (3x1
2 + 3x2

2 + 3x3
2 - 3x4

2)x4 ×x2/3
a For explanation see Appendix.b,c See the corresponding explana-

tions in Table 2.
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The squared sum of theg(D,l) functions for a given pair of
D andl should ber2l. This property may be called the sphericity
of the set of these wave functions (vide infra). The simplest
case is the set ofD p-orbitals inD-space, where their squared
sum givesr2 as in eq 1. The squared sum of the set of (D +
2)(D - 1)/2 d-orbitals inD-space as shown in Table 2 yields
r4.

Similarly for f-orbitals of 2- to 4-spaces the normalized
rectuangular coordinate expressions are given in Table 3 together
with the Chart 2. The squared sum of the set ofD(D - 1)(D
+ 4)/6 orbitals givesr6. The relative weight in the whole set
of D-f functions decreases with [(D + 2)/4(D - 1)]1/2. One
can observe various features of the hierarchical structure ofD-f
functions in Table 3 as in the case ofD-d functions. However,
the analytical formulas and relations rapidly get complicated
asD increases. Thus, there is no point in extending this type
of discussion to g and higher angular momenta.

All the results obtained in this study provide us clear and
global understanding of the mathematical structure of the atomic
orbitals in our 3-space real world not only for researchers but
also for students.

Appendix: Proof of Diagramatic Enumeration of DH l and
g(D,l)

(i) The number of homogeneous productsxi
pxj
qxk
r of orderl )

p + q + r composed ofD variables,x1, x2, ..., xD, is equal to
the repeated combination ofl selections out ofD, i.e.,

(ii) This value is equal to the number of nonnegative integer
solutions ofx1 + x2 + ... + xD ) l. If a solution is expressed
by a sequence ofD digits,x1x2...xD, it can be deemed as aD-digit
integer. For the case withl > 9 the integer may be interpreted
as l-adic.
(iii) Rearrange all the set ofDH l D-digit integers of (ii) in

increasing order. An example is shown in Table 4 withD ) 4
and l ) 2, where all the set ofD-digit integers and the
corresponding monomials of order 2 composed out ofx1,x2,x3,x4
are given.
(iv) Arrange (l + 1)× (D - 1) points to form a square lattice,

and put two additional points, A and Z, respectively, to form
the top left and bottom right wings as in Figure 1a so that these
two points respectively sit on the top and bottom rows. Starting
from A and finishing at Z, draw all the possible horizontal and
downward lines between the pair of points sitting on neighboring
pairs of columns. The number ofD-step paths from A to Z is
equal toDH l, because each of such paths can be represented by
aD-digit integer inl-adic expression if a nonnegative integer,
k, is assigned to a rightward step that goes down byk stairs.
Let us call thisD-digit integer “step code”. An example is
illustrated with the sequence of four arrows, whose step code
is 0002. Every possibleD-step path from A to Z in Figure 1a
can find its counterpart in the first column in Table 4.
(v) Transform the step code into “level code” with (D + 1)

digits for the set ofD-step paths so that each digit represents
the level of the point in a given path from level-l to level-0.
The level code for the path exemplified in (iv) is 22220. All
the level codes corresponding to the step codes given in (iv)
are given in the third column of Table 4, where the level codes
appear in decreasing order. Note that the numbers of elements
in (i)-(v) are all equal toDH l, or K(D,l).
(vi) For each point of the diagram used in (iv) and (v), one

can count the number of possible ways for going down to Z by
the shortest steps. These numbers can easily be obtained as
follows by starting atZ, for which 1 is assigned naturally.
All the points that are direct neighbors of Z are also given 1.

To each point in the next column assign such a number that is
the sum of the numbers already assigned to the right neighbors.
The numerals encircled in Figure 1a are obtained according to
this method and are equal toDH l, or K(D,l). Although Figure
1a was drawn for a special pair ofD and l, this diagram can
endlessly grow up reversively from Z to infinitely largeD and
l values, providing the same numbers in Table 1 but more
information as to their hierarchical structure.
(vii) As already stated,18 the number of degeneracy of the

angular momentuml of the atomic orbitals of aD-space atom,

CHART 1

CHART 2

TABLE 4: 1-1 Correspondence among the Homogeneous
Harmonic Polynomials and Step and Level Codes for the
Diagram Given in Figure 1

step codea monomial level code

0 0 0 2 x4
2 2 2 2 2 0

0 0 1 1 x3x4 2 2 2 1 0
0 0 2 0 x3

2 2 2 2 0 0
0 1 0 1 x2x4 2 2 1 1 0
0 1 1 0 x2x3 2 2 1 0 0
0 2 0 0 x2

2 2 2 0 0 0
1 0 0 1 x1x4 2 1 1 1 0
1 0 1 0 x1x3 2 1 1 0 0
1 1 0 0 x1x2 2 1 0 0 0
2 0 0 0 x1

2 2 0 0 0 0

aNonnegative solutions ofx1 + x2 + x3 + x4 ) 2.

K(D,l) ) DH l ) ( D + l - 1

l )
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g(D,l), is the difference betweenDH l andD-2H l. By realizing
the meaning of the processes (iv) and (vi) one can immediately
find that this number can be enumerated from the diagram,
shown in Figure 1b, which are derived from Figure 1a by
deleting Z and the direct neighbors of Z except for the bottom
two (i.e.,D ) 1 andl ) 0 and 1). One can then prepare the
tables of the step and level codes for a given set ofg(D,l)
straightforwardly. In this example, only the top entry in Table
4 has been deleted to give Figure 1b, and thus the tabulation of
the new set of paths from A to Z is omitted here. However, in
this stage the correspondence between the paths from A to Z

and monomials as in Table 4 is lost. Instead, the functional
forms of the homogeneous harmonic polynomials with proper
normalization constants as in Tables 2 and 3 are needed, where
the order of{xj} is reversed. This process is guaranteed from
a symmetrical reason.
For each point in Figure 1b one can obtain the corresponding

g(D,l) value, which satisfies the recursive relation, eq 9. This
process and the results obtained can explain what is meant in
the asymmetrical Pascal triangle proposed by the presenmt
author.18,19
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Figure 1. (a) Diagram showing the number of homogeneous products
of order l composed ofD variables. The number encircled at point
(D,l) gives itsDH l value. The sequence of the four consecutive arrows
shows one of the possible paths from A to Z, whose step and level
codes are respectively 0002 and 22220. See also Table 4. (b) Diagram
showing the number of degeneracy ofD-l-orbitals. This diagram can
be expanded freely to largerD and l values.
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